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Abstract

We present some techniques for volume rendering unstructured  data.  Colors and
opacities are interpolated between vertices using hardware assisted texture mapping.
We also present an O(n2) method for sorting n arbitrarily shaped convex polyhedra
prior to visualization.  It generalizes the Newell, Newell and Sancha sort for polygons
to 3-D volume elements.

Introduction Tuchman, without artifacts due to linear approximation
of the non-linear opacity effects.

This project grew out of the need to visualize
unstructured meshed vector fields such as those found in
existing finite element modeling code.  Some volume
rendering applications do not require more than one
color.  However, we have developed a visualization tool
for rendering multi-colored elements, such as colored
flow volumes in a vector field, using an implementation
of the Shirley-Tuchman [1] algorithm.  While
monochromatic elements can be composited in any
order as shown by [2], data sets containing many colors
must be composited in either a back-to-front or front-to-
back order.  Indeed, most volume rendering applications
have color and opacity variations which require sorting.

The Shirley-Tuchman algorithm classifies the projection
of each tetrahedron into one to four cases consisting of
one to four triangles.  Figure 1 shows the two non-
degenerate cases, where no vertex projects onto another
vertex or edge.
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This paper describes the visualization tool we have
developed which can display a set of convex, non-
intersecting polyhedra, with unique colors and opacities
assigned to each vertex, using hardware assisted texture
mapping.   It uses an implementation of the Shirley-
Tuchman algorithm to render the polyhedra once they
have been subdivided into tetrahedra.  Rendering
colored volumes requires compositing the elements in a
back to front order.  Hence, we  present an algorithm
that sorts these unstructured elements before they are
subdivided.  The algorithm will correctly sort
unstructured topologies of convex polyhedra that are
devoid of intersections and cyclically overlapping
polyhedra (see Figure 4).

Figure 1.

A tetrahedron can project to three triangles as in case
(a), or four triangles as in case (b).  Each case has a
single "thick" vertex A; the other vertices on the profile
are called "thin".  The thick vertex is the projection of
the 3-D segment A0A1 where a viewing ray intersects
the tetrahedron.  In case (a),  A0 is A, and A1 lies on the
face BCD.  In case (b), A0 is on edge BD, and A1 is on
edge CE.

Volume Rendering Assume  that  the color  C(x)  and  extinction coefficient 
τ(x) vary linearly across the tetrahedron.  Then these
quantities can be interpolated across faces or edges to
give values τ0=τ(A0), C=C(A0),  τ1=τ(A1) and C1=C(A1).
Shirley and Tuchman show that the total opacity α of
the segment A0A1 is α τ τ= − +1 20 1exp(- (l ) / ), where l

We have developed a new volume rendering
approximation which takes advantage of the texture
mapping and compositing available on modern graphics
workstations.  This allows tetrahedra to be composited
by the projected tetrahedra algorithm of Shirley and



is the length of the ray segment A0A1.  The opacity at
the profile vertices is zero.  They approximate the color
at the thick vertex to be (C + C ) / 20 1 ; we will improve
this.
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For each triangle, the color and opacity are interpolated
linearly from the three vertex values to the interior,
usually along the edges and then across scan lines, as in
Gouraud shading.  Then the interpolated color Ci and
opacity αi are composited over the old pixel color Cold to
give the new color Cnew, by the formula:
C = C +(1- )Cnew i i i oldα α .  Often the linear interpolation
and compositing steps can be performed by special
purpose hardware available in the rendering engines of a
graphics workstation.

and similarly
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The projected tetrahedra algorithm has several artifacts
which produce incorrect colors, or Mach bands
revealing the subdivision into tetrahedra.  The first
artifact comes from the linear interpolation of the color
and opacity across the tetrahedra.  This interpolation is
not C1 across the faces, and can produce Mach bands,
particularly at faces which are parallel to the viewing
direction and project to lines.  The only cure is higher
order interpolation, which is not available in hardware
on most workstations.

However, there is a more serious problem with the
algorithm, which occurs even when the color C and
extinction coefficient τ are constant.  The problem is
easiest to understand when the color is zero, so that the
image shows an opacity cloud hiding the background,
and in 2-D, where the tetrahedra become triangles.
Consider a strip of triangles T0, T1, T2... of a constant
width l as shown in Figure 2(a), projected vertically to a
scan line.  In triangle T1, C is the "thick" vertex, where
the opacity α τ= −exp( )l , and α=0 at B and D.  Figure
2(b) is a graph of the transparency t x x1 1( ) = 1- ( )α  along
the scan line, which is used to multiply the background
color during compositing of triangle T1.  It is piecewise
linear, because the opacity α(x) has been linearly
interpolated across the scan line segments BC and CD.
Similarly, Figure 2(c) shows the transparency  t2(x) from
triangle T2.  The final transparency along the segment
CD, resulting from compositing both triangles on top of
the background is the product t(x)=t1(x)t2(x), shown as
the quadratic polynomial segment above CD in Figure
2(d).

To derive the form of this quadratic polynomial, let
x=sD+(1-s)C be the point a fraction s of the way from C
to D.

Figure 2
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The transparency should actually be 1-exp(-τl), so the
quadratic term s(1-s)(exp(-τl))2 represents the error due
to approximating t1(x) and t2(x) linearly.

Figures 7(a), (b), (d) and (e) all use texture mapping for
the opacity.  Figures 7(a) and (b) show a triangular
prism divided into three tetrahedra.  Figure 7(a) uses the
average color (C0+C1)/2 at the thick vertices, while
Figure 7(b) uses the more accurate color integration of
Williams and Max [4].  Note that in Figure 7(b) the
color of the yellow-orange vertex closest to the viewer is
more prominent, as it should be.  Figure 7(c) shows a
2x2x2 array of cubes, each divided into five tetrahedra,
and rendered by linearly interpolated opacities.  Notice
the Mach Bands predicted in Figure 2.  Figure 7(d)
shows the same volume using the texture mapping for
more accurate opacities, and is much improved.

Other similar quadratic segments come from other
projected diagonal edges, and the final intensity,
proportional to the transparency if the background is
uniform, is not C1.  In three dimensions, the
corresponding effect produces Mach bands along the
projections of edges of the tetrahedra.

The solution to this problem is to define α1(x) correctly
as 1-exp(-sτl).  This requires a linear interpolation of the
quantity τl, and then an exponential per pixel, which is
not commonly available in hardware.  Instead, we have
used a texture map table on our SGI Onyx system.  For
the case of constant τ per tetrahedron, as in our flow
volume application, we put the quantity 1− −exp( u)  in a
one dimensional texture table, indexed by u [2].  The
texture coordinate u was set to zero at the thin vertices
of each triangle, and to τl at the thick vertex, and was
interpolated by the shading hardware, before being used
as an address to the texture table.

The Sorting Algorithm

Most volume rendering algorithms use point sampling
methods to calculate the color and intensity.  Because
the Shirley-Tuchman algorithm allows us to scan
convert entire polyhedra very quickly, we needed to
devise an efficient algorithm that would sort
unstructured meshed elements in a back to front order.
Our implementation will correctly sort arbitrarily shaped
convex elements in a back to front order as long as there
are no cycles or intersections in the data set.  Each
polyhedron can then be subdivided into a set of
tetrahedra for rendering.   If a convex mesh is structured
so that cells meet on common faces, and this topological
information is stored in an adjacency graph, then the
adjacency graph can be used to produce a back-to-front
sort (see [10] or [11]).  However, we wanted to handle
unstructured meshes where this data is unavailable.
Such examples are sliding interfaces, where cells meet
on only part of their faces, and non-convex meshes, such
as those with cavities.  Figure 3 shows such features in a
mesh of a piston inside a cylinder.   We extended the
Newell, Newell and Sancha sort for polygons to
correctly handle convex polyhedra.  The sort will not
perform subdivisions in the case of intersecting
polyhedra or cycles, instead it will render them in an
arbitrary order.

If τ varies linearly within  each  tetrahedron the  product 
τl varies quadratically inside each triangle.  Quadratic
interpolation of texture coordinates was implemented in
hardware on the Apollo DN10000VS [3], but was not
available on our Onyx.  Therefore we used a 2-D
texture  table, with  coordinates τ and l, and  put
1− −exp( τl )  in the table.

Now consider the case when the color also varies
linearly across the tetrahedron.  The Shirley-Tuchman
approximation (C0+C1)/2 for the color of the thick
vertex is not precise; it weighs the two colors equally.
The frontmost color should have greater weight, because
the opacity along the ray segment hides the rear color
more than the front one.  Williams and Max [4] have
found an exact formula for the color in this case, which
they implement with the aid of table lookups.  However,
the supplementary arithmetic required goes far beyond
what is practical in hardware computation at each pixel.
As a compromise, we have used the exact analytic form
of the color of the thick vertex, and then used the
hardware to interpolate the color across each triangle.
The colors of the thin vertices come from the original
color specification, and the opacity is determined, as
above, from a texture table.  This compromise can be
implemented entirely in hardware, and gives a fairly
smooth color variation that seems to move appropriately
when a colored volume density rotates.

sliding interfaces

Figure 3.

This algorithm is a three dimensional extension of the
Newell, Newell and Sancha painter's algorithm [5-8]
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and operates on the volumes after having performed all
of the perspective transformation operations.  Once the
elements have been sorted in back-to-front order, they
can be fed to the volume renderer for scan conversion
and compositing, using the techniques described above.

intersection point  for P and for Q, and returns the
polyhedron whose Zintersection is farther from the eye.  In
the case that they are both equal, then we continue
searching for intersections looking for an inequality
between the two Zintersection  components.

There are three stages to the sorting process.  The first
applies all viewing transformations on the vertices to
obtain the screen coordinates with a perspective
corrected Z.  The second obtains a rough sorting of the
polyhedra based on the rearmost Z component of each
element.  Since we have applied the viewing
transformation to all vertices and have scaled Z so as to
correct for perspective, we would like to sort by
increasing Z (the eye looks down the Z axis towards
negative infinity in a right-handed coordinate system).
In our implementation, this rough sort was obtained
through an O(nlogn) QuickSort.  The third stage, or
"fine tuning" of the sort, is a bit more complicated.
However, like the painter's algorithm approach, it is also
broken down into multiple steps with each one
increasing in computational complexity, in  hopes that a
majority of the polyhedra will pass the earlier and less
expensive tests.

If the above function returns False, then polyhedra P and
Q are considered to be in the wrong order and Q should
be moved to the head of the list and the tests should be
repeated with Q becoming the new P.  It is possible that
the list H could contain a cycle.  For instance, if
polyhedron A obscures B, and B obscures C, and C, in
turn, obscures A, then there is no correct ordering for
the polyhedra involved.  Figure 4 illustrates a cycle for
three polyhedra.  The existence of a cycle is easily
determined by tagging polyhedron Q  before inserting it
at the head of the list after the Test_Polyhedra()
function fails.  If  Q has already been tagged, then a
cycle exists and it will need to be addressed.

The goal of the fine tuning is to find a separating plane
between two polyhedra, P and Q, in order to determine
whether or not P can be safely drawn before Q.  The fine
tuning process is broken down into five steps in order to
efficiently find this separating plane.  Given a list H of
polyhedra roughly sorted by increasing Z coordinate of
the rearmost vertex (called Zrearmost), let polyhedron P be
at the head of the list.  P can be safely  rendered if, for
all polyhedra Q in the list H whose Zrearmostis less than
(behind) P's Zfrontmost,  the following function returns a
value of True:

Figure 4.

If polyhedron P passes the tests for all polyhedra Q
where Qrearmost is less than Pfrontmost, then polyhedron P
is free to be rendered; the tests have determined that P
will not obscure any polyhedra which are considered to
be in front of it.  P is then shipped to the renderer and
the next polyhedron in the list is chosen for the new P.

Test_Polyhedra(P,Q)
{
   if (P and Q do not have

overlapping X extents) return True
The first two tests check the bounding boxes of the two
polyhedra in the X and Y plane.  The main thrust of the
third and fourth tests is to find a separating plane
between P and Q.  If such a plane exists, then P can
safely be considered to lie behind Q.  To simplify the
third and fourth tests, we can mark each face of every
polyhedron as being either a front-facing polygon (it
faces the eye) or a back-facing polygon.  This is easily
determined because the algorithm stores an outward
pointing normal for each face.  Therefore,  a simple
query as to the sign of the Z component of a face's
normal is enough to determine whether the face is front
facing or not.  A positive Z, in a right-handed
coordinate system,  is front facing.  Otherwise it is back-
facing.  This pre-processing is all performed while
reading in the meshed topology.

     else if (P and Q do not have
  overlapping Y extents)
  return True

       else if (P is behind a
    back-plane of Q) return True

         else if (Q is in front of a
     front-plane of P) return True

           else if
 (Q!=EdgeIntersection(P,Q))

      return True
               else return False
}

The function EdgeIntersection(P,Q)  returns the
polyhedron which it determines to be in back.  It makes
this decision by looking for intersections between the
edges of P's projection and the edges of Q's projection.
If one is found, it finds the Z component of that
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The third test then simplifies to  testing whether all of
P's vertices lie behind a plane defined by any one of Q's
back-facing polygons.  If this is true, then the face under
consideration forms a separating plane between P and Q
and therefore we can conclude that P is behind Q.
Performing this test is a matter of making sure that for
at least one back-facing polygon of Q, the sign of
f x y zj j j( , , )  for all vertices j in P is non-negative for

that particular face of Q.  The plane equation, f, is based
on the outward pointing normals for that face.   If this
test fails, then the algorithm will proceed to the fourth
test and try to determine whether the plane specified by
a front-facing polygon belonging to P separates P from
Q.

is not necessarily the situation in case (b).  We can rest
assured that this will never cause a sorting glitch
because the front face of the brick (assuming the
tetrahedron is in front of the brick) is a front-facing
separating plane and would have been caught in the
fourth test.  This fifth test is a more efficient alternative
to the linear programming method proposed by Newell
[6].   If the fifth test fails, then polygon Q should be
moved to the front of the list and the whole process
should be repeated.

With the exception of the fifth, these tests are very easy
to perform.  When reading in the topological data-set,
one must store the plane equation coefficients, with
respect to an outward pointing normal, in the polyhedral
database.  From these pre-computed coefficients,
determining which side of a face a point j lies is as
simple as finding the sign of ax by cz dj j j+ + + .

This fourth test is very similar to the third test.  In
determining whether Q lies entirely in front of P, one
must make sure that for at least one front-facing polygon
of P, f x y zj j j( , , )  is  positive for all vertices j in

polyhedron Q.  This time, f  is the plane equation for a
front-facing polygon of P, again based on outward
pointing normals.  If this test passes, then Q lies entirely
in front of at least one of the front-facing polygons of P
and it can be concluded that P lies behind Q.

In the case that all of the tests fail and we have a cycle,
the program will render first whichever of P and Q has a
Zfrontmost further from the eye.

Non-planar Faces

The algorithm described works correctly for convex
polyhedra with planar faces and no cycles or
intersections.  Unfortunately, it is quite possible, in
finite element codes, for the faces to skew slightly
yielding non-planar faces.  Fortunately, the faces will be
mostly planar because highly non-planar faces can lead
to instabilities in the modeling code.  Figure 6 illustrates
an exaggeration of what could possibly happen.  Even if
the face were mildly non-planar, it is still enough to
cause the tests to fail.  To accommodate slightly non-
planar faces, we have introduced an error tolerance δ.

The fifth test, EdgeIntersection() ,  returns either
the index of the polyhedra which is in back, or an error
condition if it cannot detect any intersecting edges.  The
two cases where this test can fail are shown in Figure 5.
As we will see, this does not jeopardize the correctness
of our algorithm.

 (a) (b)

P
Q

In order to sort convex polyhedra with non-planar faces
as shown in Figure 4, the algorithm first calculates an
average outward pointing normal, (a,b,c), for each face.
This is done using Newell's method as follows [8,9]:
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Figure 5.

The illustrations (a) and (b) in Figure 5, which both
represent screen projections, both fail the
EdgeIntersection() function because neither
have intersecting edges in their projections.  However,
in case (a) the order in which the two tetrahedra are
rendered makes no difference since they are completely
disjoint in the screen projection and therefore an error
condition can correctly  be treated as if polyhedron P
were in front of polyhedron Q.  On the other hand, this

where: j= (i+1) mod n
and n is the number of vertices per polygon
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The last coefficient of the plane equation, d,  can be
calculated by picking some point on the average plane.
We chose the center of gravity of the face for this point
as follows:

Discussion

The fine-tuning sort described runs in O(n2)with respect
to the number of polyhedra sorted.  However, this
quadratic running time is an upper bound and would
only be found in the most pathological cases where all
polyhedra have overlapping Z extents.  The average
running times for normal data sets should be lower.
While the first and second tests run in constant time, the
third and fourth tests run in  O(FiEj) and O(EiFj) time
where Ei and Ej correspond to the number of edges for
polyhedra i and j, respectively, and Fi and Fj are the
number of faces.  The fifth test runs in O(EiEj)  Again,
this is a worst case running time and it should be
substantially better in practice since the function
terminates once a suitable intersection in the two
projections is found.
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To determine on which side of a plane a point lies, an
error tolerance is used.  This is needed because with
non-planar faces the algorithm could return vertex a of
polyhedron Q as being contained inside of P, which
would ultimately result in a cycle (see Figure 6).  This is
not the case.  In fact, if vertex a were actually touching a
plane of polyhedron P, machine round-off might place a
on the wrong side of that face which, again, would result
in a cycle.  Therefore a tolerance, δ, is used to represent
an acceptable distance from a vertex to a face.  In other
words, the third and fourth tests should consider vertex
a to be on the outside of a face (the plane equation
evaluated at point a should yield a non-negative value) if
point a is within δ units away from the plane under
consideration, regardless of which side of the face point
a actually lies.  We can rationalize the existence of this 
δ tolerance as follows:  if a corner of polyhedron Q
happens to intersect a planar face of polyhedron P by the
amount δ, for a suitably small δ, the visual impact will
be minimal, if perceptible at all.  Our implementation
uses a unique δ for each face, based on the maximum
deviation of  a vertex from its corresponding average
plane.

The algorithm was implemented in C++ and has been
used to sort those primitives found in the SGI Explorer
pyramid type.  The volume primitives are all subclasses
of a  general primitive  C++ class.  These subclasses are
as follows:  the tetrahedra, pyramid, prism, wedge and
brick.  We can easily extend the system to include
others.

Table 1 shows some timing data using the complete sort
on an SGI Indigo2.  As contrast, the  QuickSort can
sort 24,000 elements in 4 seconds, and 157,000
elements in 27 seconds.

Complete Sor t

elements

seconds

0

50
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150

0 5000 10000 15000 20000 25000

Table 1.

           eye

Q

P

a

Figure 7(e) illustrates the results of the sort, with the
Williams and Max color integration, on the "blunt fin".

We present no new approaches to cycle breaking.  If a
cycle is detected during the sorting, then the polyhedron
with the vertex farthest from the eye would be removed
from the list and rendered.  The most common form of a
cycle the algorithm would detect in a data set would
probably be two non-planar faced polyhedra

Figure 6.
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"intersecting" each other.  However, the δ overlapping
tolerance should eliminate most of these situations.  The
traditional, but slower method for removing cycles, such
as the type illustrated in Figure 4, would be to  pass  one
or more  cutting planes through the offending polyhedra.
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Conclusion

This paper presents extensions to the  Shirley-Tuchman
algorithm for compositing colored elements with
hardware assisted texture mapping.  We have also
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7a. Integration using Average color. 7b. Williams’ color integration.

7c. No texture mapping. 7d. With texture mapping.

7e. Blunt fin with 440 sorted brick elements, using texture mapping.


